REPORT
GEOPHYSICAL PROSPECTING OF PREHISTORIC SETTLEMENT
PROMAHON - TOPOLNICA
September 2002

Written by: Dr. Mihail Georgiev
Kiril Velkovski

Sofia, December 2002
ACKNOWLEDGEMENTS

The authors would like to express their most sincere gratitude to Dr. Ch. Koukouli-Chrysanthaki for her kind invitation to us to participate in the exploration of the site, as well as for her responsiveness and hospitality. Our most cordial thanks also to Mr. Menios Mengidis, for his support as a colleague, as well as for his understanding and responsiveness.
CONTENT

1. GENERAL KNOWLEDGE ABOUT THE SITE
2. GEOLOGICAL AND ARCHAEOLOGICAL CONDITIONS
3. GEOPHYSICAL METHODS
 3.1. Electrical profiling (profiling)
 3.2. Electrical sounding (sounding)
4. INVESTIGATED AREAS
 4.1. Area 1
 4.2. Area 2
 4.3. Area 3
5. RESULTS OF THE GEOPHYSICAL PROSPECTING

LIST OF FIGURES

Figure 1. Plan of geophysical measurements
Figure 2. Contour map of electrical profiling – configuration A1M1N1B
Figure 3. Contour map of electrical profiling – configuration A2M1N2B
Figure 4. Contour map of electrical profiling – configuration A3M1N3B
Figure 5. Pseudo 3D block diagram
In September 2002, a research team of the Archaeometry Laboratory consisting of Dr. Mihail Georgiev and Kiril Velkovski conducted additional geophysical exploration of a prehistoric settlement Promahon - Toplnitza. The prospecting are part of complex archaeological studies organised by Archaeological Museum in Kavala.

1. GENERAL KNOWLEDGE ABOUT THE SITE

The archaeological site Promahon- Toplnioca is located at the eastern foothills of the Belasica mountain, along the right side of valley of Struma river. The terrain in the neighborhood of the prehistoric settlement is divided by the Greece-Bulgarian boundary. The nearest greece village is Neo Petrici, far off about 15 km. The whole area of the settlement is approximately 50 dka.

2. GEOLOGICAL AND ARCHAEOLOGICAL CONDITIONS

The archaeological site overlies a positive relief structure, 300-400 m long and about 150 m wide. It can be look at as a fragment from an old non-flooded river terrace. The altitude is between 75 m and 85 m.

The described structure is enlarged to the west, the slope is increased and passes into a slope of the Belasica mountain. The plain is an younger non-flooded terrace of the Struma river to the north, the east and the south.

According to preliminary information, the following layers and materials build up a geological section in the region:
- the superficial humus layer consists of a black humus clay, embraces a lot of organic and plant materials and rock pieces. It is 0.15-0.20 m thick;
- the layer of anthropogenic nature consists of clayey materials containing an abundance of ceramic and rock fragments and stones. The thickness of that layer is about 1.5 m;
- the clayey layer consists of clay, rock pieces and gravels obtained from different way - the weathering of the bedrock, the erosion of the mountain slopes, as well as alluvial materials from the river terrace;
- the geological foundation (bedrock) build up of metamorphic rocks: mica shales and gneisses.

The eastern part of the ancient settlement was explored through archaeological excavations, while the rest of its outlines have not been specified.

The present measurements were carry out very close to the archaeological excavations and the interpretation of the results is getting more complicated.

3. GEOPHYSICAL METHODS

The electrical methods were used for geophysical investigations of the ancient settlement. The apparent resistivity of the environment was determined by investigations of the parameters of an artificial electric field. The measurements were performed using resistivity-meter EPG-5. The method was applied in two modifications:

3.1. Electrical profiling (profiling) - according to that method the apparent resistivity of the environment was investigated to constant depth. The profiling was applied for searching and locating a zones in high apparent resistivity, caused by accumulations from stones or ceramic materials, remains from walls or old constructions.
The measurements were performed by four-electrode configuration by three different sizes - A1M1N1B, A2M1N2B and A3M1N3B.

3.2. **Electrical sounding** (sounding) - according to that method the apparent resistivity of the environment was investigated in one point to a different depth. The sounding was applied to determination a depth to horizontal or slight slope surfaces, divided layers with different apparent resistivity.

The measurements were performed in three points located western from square IZ using three-electrode configurations – AnM0.5N and B in infinity.

4. **INVESTIGATED AREAS**

Using a profiling method were investigated three areas from the prehistoric settlement (figure 1):

4.1. **Area 1**

The area 1 is located at 0.5 m western from the archaeological excavations (Squares IST and IZ).

- 8 profiles with North-South direction and length 23 m;
- profile separation 0.5 and 1 m;
- measurement points separation 1 m;
- prospected area 140 m²

4.2. **Area 2**

The area 2 is located at 0.5 m northern from the archaeological excavations (Squares IST, I and IF).

- 6 profiles with West-East direction and length 23 m;
- profile separation 0.5 and 1 m;
- measurement points separation 1 m;
- prospected area 100 m²

4.3. **Area 3**

The area 3 is located at 0.5 m south-western from the archaeological excavations (Squares IZ, IA and IB).

- 6 profiles with West-East direction and length 20 m;
- profile separation 1 m;
- measurement points separation 1 m;
- prospected area 100 m²

5. **RESULTS OF THE GEOPHYSICAL PROSPECTING**

The results by the profiling measurements are presented like contour maps of the apparent resistivity (Figures 2, 3 and 4). According these maps are able to study the distribution of the high resistivity zone. This zone is located in western and southern part of the studied area against the squares IZ, IST, I and IF. The width of the zone is about 3.5-4 m and the depth is more than 3.5 m. The apparent resistivity in the southern part of the area is approximately equal to the resistivity of the surrounding soils.
PL A N

OF GEOPHYSICAL MEASUREMENTS

Figure 1
Figure 2

CONTOUR MAP

OF APPARENT RESISTIVITY

Configuration A1M1N1B - sensibility up to 1.00 m

Relative coordinate system

Colour range scale Ro [Ohm.m.]

<table>
<thead>
<tr>
<th>35</th>
<th>45</th>
<th>55</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>115</th>
<th>120</th>
</tr>
</thead>
</table>

Low resistivity zone High resistivity zone Transitional zone

Zone with low content of stones Zones with increased content of stones

Excavation squares:
CONTOUR MAP
OF APPARENT RESISTIVITY

Configuration A2M1N2B - sensibility up to 1.75 m

Relative coordinate system

Colour range scale Ro [Ohm.m.]

Low resistivity zone
Transitional zone
High resistivity zone

Zone with low content of stones
Zones with increased content of stones

Excavation squares:
CONTOUR MAP
OF APPARENT RESISTIVITY
Configuration A3M1N3B - sensibility up to 2.30 m

Colour range scale Ro [Ohm.m]

Low resistivity zone
Transitional zone
High resistivity zone

Zone with low content of stones
Zones with increased content of stones

Excavation squares:
PSEUDO 3D BLOCK DIAGRAM
OF THE RESULTS FROM THE ELECTRICAL MEASUREMENTS

View point: West-North side of the area

Depth scale:
Configuration A1M1N1B - sensibility up to 1.00 m section 1
Configuration A2M1N2B - sensibility up to 1.75 m section 2
Configuration A3M1N3B - sensibility up to 2.30 m section 3